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Two Finite Elements for Modeling the 
Adhesive in Bonded Configurations? 
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Two special finite elements are presented for modeling the adhesive in a bonded configuration. The 
assumptions of numerous lap joint theories can be modeled with the elements by selecting values of 
control parameters. An example is presented where control parameters are selected to model the 
assumptions of Delale and Erodogan and results with the elements are shown to converge to those of 
that reference. In another example, numerous combinations of control parameters are considered to 
study the effects of different assumptions on the maximum shear and normal stress in the adhesive. 

KEY WORDS Bonded joints; lap joint assumptions; maximum adhesive stress; finite elements; 
adhesive element; offset nodes. 

INTRODUCTION 

Goland and Reissner' presented in 1944 their classic paper on stresses in bonded 
joints. Other authors have extended their formulation to  different configurations 
and/or constitutive relationships for the ad her end^.*-^ References 10 and 11 give 
excellent reviews of research in this area. In general, these authors treat the 
adhesive in a similar fashion to that of Goland and Reissner. Other authors have 
attempted to make less restrictive assumptions about the adhesive as in Refs 
12-14. Reference 12 allows stresses to vary through the thickness of the adhesive. 
Reference 13 is a general approach which removes many of the restrictions of 
earlier papers. The approach is, however, quite complex and has not yet been 
extended to configurations other than the single lap joint. Delale and Erdogan14 
also removed some of the restrictions and inconsistent assumptions found in the 

t This work was performed at the U.S.  Army Materials Technology Laboratory under the Summer 
Faculty Research and Engineering Program. 
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26 W. C. CARPENTER AND R. BARSOUM 

earlier theories. That reference is especially important in that it gives viscoelastic 
as well as elastic solutions. The viscoelastic solutions are analytical solutions to 
viscoelastic problems and thus provide check problems for numerical finite 
element based viscoelastic algorithms. 

It might seem that a finite element analysis which idealizes both the adherends 
and adhesive with standard elements could be used to bypass the deficiencies of 
the lap joint theories and thus obtain the maximum stress in the adhesive. Such 
an approach has been tried in Refs 15-21. In most of these investigations, the 
investigators were not aware of the stress singularities which exist at the joint 
edges at the bi-material interfaces. The stress singularities make it impossible to 
obtain convergence of stress there due to the singular nature of the elasticity 
solution at those locations. References 22-25 have recognized the singular nature 
of the stress at.joint edges at the bi-material interfaces and have calculated stress 
intensities at these locations. It has yet to be experimental verified whether stress 
intensities can be used as reliable strength parameters. 

Recently Reddy and Royz6**’ have performed non-linear analyses of adhesively 
bonded joints. In  Ref. 26 they used an updated Lagrangian formulation to 
develop a 2-D finite element which accounts for geometric non-linearity. In Ref. 
27, they examined viscoelasticity and diffusion in adhesively bonded joints and 
reported results using their special finite element program NOVA. 

This paper is concerned with the linear problem only. It uses special adhesive 
elements to model the adhesive. The elements are derived using incomplete 
strain-displacement equations or incomplete strain displacement equations to- 
gether with incomplete stress-strain equations to give a simplified state of stress 
in the adhesive. The stress singularities disappear with these elements and thus it 
is possible to obtain convergence of adhesive stress with mesh refinement. 
Maximum adhesive stresses thus obtained are, of course, limited by the fact that 
one or more of the equations of elasticity are being violated. The stress intensity 
approach, however, is also limited in that it is based on the linearized strain 
displacement equations. This linearization is obviously not valid when infinite 
strains are being predicted. One could obtain a finite element solution to the 
bonded connection problem using the nonlinear equations of elasticity. However, 
such analyses require sophisticated finite element programs which are not readily 
available and such analyses are computationally expensive to obtain. Of these 
choices, the best seems to be to use special adhesive elements which model 
reasonable lap joint theories. In this way, the power of the finite element method 
can be used to analyze complex geometries, and performance using the elements 
can be tested against corresponding analytical solutions. 

Different adhesive elements can be developed, depending on the assumptions 
made in the element derivation. CarpenterZB developed a 2-node element to 
model Goland and Reissner’s’ zero-thickness adhesive assumption (thickness 
assumptions are discussed in detail in a later section of this paper). Later, 
Carpenter29 developed another 2-node element which could model Goland and 
Reissner’s’ finite thickness adhesive assumption as well as the assumptions of 
Ojalvo and Eidinoff.” References 11 and 30 develop a 6-node adhesive element 
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FINITE ELEMENTS FOR ADHESIVE MODELING 27 

/- beam element adwsive element 

node of beam element and 
offset node of adwsive element 

l a .  2nodeelement lb .  4nodeelement 
FIGURE 1 Finite element idealizations. 

that models the assumptions of Delale and E r d ~ g a n . ' ~  Here the adherends were 
modeled with isoparametric elements as opposed to plate elements as in Ref. 14. 

The present paper presents 2-node and 4-node adhesive elements that are 
general enough that they can model the assumptions of numerous authors. The 
type of assumptions to be made are set by various control parameters. Example 1 
is presented where the elements are used to model the assumptions of Ref. 14 
and the results are shown to converge to those of that reference. In Example 2, 
numerous combinations of control parameters are considered to study the effects 
of different assumptions on the maximum shear and normal stress in the adhesive. 

FINITE ELEMENT IDEALIZATIONS 

Adherends can be modeled conveniently with standard beam-type elements. 
These elements, however, normally have their nodes along the centroid of the 
element. Thus, in this study, the adhesive is modeled with special elements with 
offset nodes which correspond to the nodes of the adherend elements. Figure l a  
shows a finite element idealization of a bonded configuration where the adhesive 
element is a 2-node element with offset nodes. Figure l b  shows a 4-node adhesive 
element with offset nodes. Specifics concerning the adhesive and adherend 
elements are next discussed in some detail. 

FOUR NODE ADHESIVE ELEMENT 

Figure 2 shows a 4-node adhesive element (the offset nodes are not shown). The 
displacements within the element are assumed to vary linearly in the x and z 
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28 W. C. CARPENTER AND R. BARSOUM 

q -1 - 2 1 - 
5 w 2  z 4 w 4  

P - 4  
P -l 

,$ -1 

FIGURE 2 Four node adhesive element. 

direction thus 

which is the standard isoparametric displacement  assumption^.^' 

Straindisplacement equations 

Strain within the element using the linearized strain-displacement equations is 
found from Eqs (1) and (2) thus (see Eq. (3) opposite) or 

In Eq. (3), the complete linearized strain-displacement equations require that 
a, = at = 1. Various investigators have made assumptions concerning the strain- 
displacement relationship for the adhesive. The sundry assumptions can be 
modeled by assigning values to a1 and a2. 

For example, authors such as Goland and Reissner,' Ojalvo and Eidinoff,I2 and 
Delale and Erdogan14 use for the adhesive an incomplete shear strain- 
displacement equation thus: 

dU 
Y x z  = - az 

Thus to model such an assumption 

a' = o  
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30 W. C. CARPENTER AND R. BARSOUM 

Many  author^'.'^ likewise assume that the strain within the adhesive is constant 
through the thickness. This assumption requires that 

a*=O 

Stress-strain equations 

Stress and strain within the adhesive are related thus 

where for plane stress (IPLANE = 0) 

a 5  

[ D l 4  [ a4va 

0 
1 - v, 

and for plane strain (IPLANE = 1) 

Ea(1- va) 
[ D l  = (1 + v,)( 1 - 2v,) 

0 

[E a5 

0 

1 - v, -- :I 2 

a4Va 

1 - v, 

0 

(7) 

where 
E, = the modulus of elasticity of the adhesive, 
v, = Poisson’s ratio for the adhesive, 
a4 = 1 for the complete stress-strain equations 

cu, = 1 for the consistent stress-strain equations 

Goland and Reissner’ (referred to as GR) and Ojalvo and Eidinoff” (referred 

= 0 for incomplete stress-strain equations as discussed below, 

= other value for inconsistent stress-strain equations as discussed below. 

to as OE) assumed the following stress-strain relationship for the adhesive 

a, = Ea&, (for GR and OE) 

To model this assumption (whicn is a violation of the stress-strain equations) one 
should take 

or 
a5 = 1 - v’, (for plane stress and GR and OE) 

a5 = (’ + - 2va) (for plane strain and GR and OE) 
(1 - va) 
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a4 = 0 (for GR and OE) 

31 

The stiffness matrix [k.] relates t..e element nodal forces to the element nodal 
displacements thus 

or  

The matrix [k,] is given b?' 

For a unit width configuration, Eq. (10) becomes 
x = L  z=hR 

[ k a l =  I I [ ~ ( x ,  ~)I ' [DI[B(~,  Z)I dz 
x=O z=-hR 

If the E,  7 reference system is employed, Eq. (11) then becomes 

Integration of Eq. (12) is conveniently done using the Gaussian Quadrature 
integration f ~ r m u l a e . ~ '  In this investigation, 2-point quadrature was used to 
integrate in both the 5 and 7 directions. 

Offset nodes 

If the adhesive element is to be used with beam or plate elements which have 
their nodes along the centroids of the elements, the nodes of the adhesive 
elements will have to be offset. This offset can be accomplished with a rigid body 
transformation of forces and displacements. Figure 3 shows the adhesive element 
with offset nodes. A bar over a symbol indicates "at the offset nodes." From 
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32 W. C. CARPENTER AND R. BARSOUM 

equilibrium of the rigid body connecting the nodes of the adhesive element to the 
offset nodes (see Figure 4), 

{"+ Mi t o  :]0 
and 

{2}=[: Mi - t  0 :I[;} 

'i 
FIGURE 4 Forces on rigid bodies. 
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FINITE ELEMENTS FOR ADHESIVE MODELING 

' x1' 

21 
a1 
8 2  {P}=4 . 
x 4  

2 4  

J 4 ,  

33 

'' { S } =  

or 

1 0 :  
0 1 :  
t o i  

; o  1 

I 

In those theories which consider that the stress in the adhesive is constant 
through its thickness, the deformation characteristics of the adhesive are defined 
by the quantities E,/h and GJh and not by the parameters E,, G,, and h 
themselves. Thus, it is possible to treat the adhesive as having zero thickness with 
properties defined by E,/h and G,/h. Goland and Reissner' and Delale and 
Erdogan14 treat the adhesive in this way. With the finite element approach for 
this case, the stresses from the adhesive are assumed to be transferred to the 
adherends at a distance of fb/2 + h/2 from the centroid of the adherends as shown 
in Figure 5a. This approach was used in Ref. 28. This situation is referred to in 
this paper as the zero thickness of adhesive assumption. For the case of zero 
adhesive thickness then 

IFIN = 0 tb t = - + -  
2 2 '  
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34 W. C. CARPENTER AND R. BARSOUM 

centraid 
I 4 2  e&erend 

This msleriel part of 
adwend tuI6088 ml 
effect centroid, A or I 

canter of amesive 

5a.  Zero thidutess a h s i v e  

5b. Finite thiduiess aahesive 
FIGURE 5 Treatment of adhesive. 

Figure 5b shows the case where stresses from the adhesive are transferred to the 
adherend at the actual edges of the adherends. Ojalvo and Eidinoff" treated the 
adhesive in this way and a finite element model of their assumptionsz9 does 
likewise. This situation is referred to as the finite thickness of adhesive 
assumption. For this case 

IFIN = 1 tb I=- 
2 '  

The stiffness matrix [in] relating { p }  to (6)  is given by3' 

TWO NODE ADHESIVE ELEMENT 

Figure 6 shows a 2-node adhesive element. The displacements within the element 
are assumed to be of the formz9 

dw ( w ; + w ; )  z w' = - = + - ( w ;  - w;> ax 2 h 
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FINITE ELEMENTS FOR ADHESIVE MODELING 35 

M I G 1  - - 
x 1 . u  1 offset node * 

FIGURE 6 Two node adhesive element. 

strain within the element is given by 

where 

0 6 ,  0 
0 0 0  
bl 0 b2 

0 
0 
.b1 

-b*  
0 
0 

1 
b l = h  

r 

b3 = al[ 1/2 - w] 
and where a1 and az are defined in the 4-node adhesive element derivation. As 
the strain does not vary in the x direction with this element, the integrations of 
Eq. (10) can be easily performed in closed form to give 

[k,I = 

c1 0 c3 -c1 0 c3 ’ 

0 c2 0 0 -c2 0 

c3 0 cq -c3 0 c5 

-c1 0 -c3 c1 0 -c3 
0 -c2 0 0 cz 0 

c3 0 c5 -c3 0 c4 
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36 W. C. CARPENTER AND R. BARSOUM 

where for a unit width configuration 

GL 
c1=- 

h 

~2 = as Dll Llh 

c3 = c1alh/2 

where Dll is the 1 , l  term of the matrix [D] in Eqs. (6) or (7). 

Eidinoff” by taking 
If one models the assumptions of Goland and Keissner’ or Ojalvo and 

a q = O  

as = (1 - vz) (for plane stress) 

and if a2 of Ref. 29 is replaced by a1a2 to account for differences in usage of a2 
between Ref. 29 and this paper, the stiffness matrix of Eq. (24) is found to 
correspond to that of Ref. 29. 

The stiffness matrix [i.] is then given by Eq. (20) where 

r l  o o o o 01 

‘ T 1 = O o o  1;;; H 1 0 0  ::j 
0 0 0 --t 0 1 

THE ADHEREND ELEMENT 

The adherends are modeled with beam-type elements. The element idealization is 
shown in Figure 7. Bending and axial deformation is considered and shear 
deformation may or may not be considered depending on a control parameter. 
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FINITE ELEMENTS FOR ADHESIVE MODELING 37 

- -  - -  
1.w 1 = 2 w 2  

FIGURE 7 Bean element. 

Let 

Then3’ 

where 

I { 6 b ) =  

21 0 0 -21 0 0 
E’ E3 0 -E* 23 

[ i b ] = [  jl Ed i -: E’ --E3 

-22  -c3 
E3 E5 +3 2 4  

and where 
E = the modulus of elasticity of the adherends, 
v = Poisson’s ratio of the adherends, 
I = moment of inertia of the adherends under plane stress conditions, 

A = area of the adherends under plane stress conditions, 
I* = I for plane stress 

= [/(I - v’) for plane strain, 
A * = A for plane stress 

= a6A/(1 - v’) for plane strain, 
a6 = 1 for a consistent plane strain assumption for the adherends 

= other value for inconsistent assumptions as discussed below, 
A, = the effective area in  hear,^' 
a3 = 1 if shear deformation of the adherends is considered 

= 0 if shear deformation neglected, 
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38 W. C. CARPENTER AND R. BARSOUM 

For rectangular shaped adherends of unit width 

where tb is the thickness of the adherend. 
Goland and Reissner' took the adherends to be in plane strain (I* = I/(1 - v')) 

when considering bending but used, inconsistently, plane stress when considering 
axial forces (A* = A). To model Goland and Reissner's assumption 

a 6  = 1 - v2 (plane strain and GR)  

Review of terms 

Table I lists the various control parameters in this paper and the significance of 
those parameters. 

THEOREY OF DELALE AND ERDOGAN'' 

Delale and Erdogan assume that stresses are constant through the thickness of 
the adhesive. Thus 

a 2 = 0  (32) 
in Eq. (3). They also assume an incomplete shear strain-displacement equation, 
i. e. 

au 
Y*z = - 

d Z  

Thus 
a1=0 

(33) 

(34) 
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FINITE ELEMENTS FOR ADHESIVE MODELING 39 

TABLE I 
Control parameters 

Parameter Significance 

IPLANE = 1  
= O  

IFIN = O  
= 1  

a1 = O  

=1 

= O  
= 1  

- 0  
= 1  

= O  

=1  

= 1  

for plane strain 
for plane stress 

for zero thickness adhesive assumption 
for finite thickness adhesive assumption 

for incomplete shear-strain displacement assumption for the 
adhesive 
for complete shear-strain displacement assumption for the 
adhesive 

if adhesive strain does not vary with L 
if adhesive strain does vary with z 

if shear deformation of the adherends is not considered, 
if shear deformation is considered 

if certain terms in the stress-strain equations for the adhesive 
are neglected 
if those terms are not neglected 

if the consistent stress-strain equations for the adhesive are 
considered 
other value if inconsistent equations considered 

if consistent plane strain assumption for the adherend used 
other value in inconsistent assumption used 

in Eq. (3). They consider that a a, stress can exist in the adhesive and thus use 
the complete and 

in Eq. (7). These 

consistent stress-strain equations. Thus 

ffq = 1 
ffg = 1 (35) 

authors consider the case of plane strain, thus 

IPLANE = 1 (36) 
Because of the plane strain assumption, for the adherends 

A * = A / ( l - v ’ )  

I *  = 1 / ( 1 -  v’) (37) 

Because of the consistent use of plane strain for the adherends by these authors, 
there is is no correction on the A* term. Thus 

ffg = 1 (38) 

IFIN = 0 (39) 

These authors also used the zero thickness of adhesive assumption. Thus 
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40 W. C. CARPENTER AND R. BARSOlJM 

I 

FIGURE 8 Membrane loading. 

t 
They considered both bending and shear deformation for the adherends. Thus 

in Eq. (24). 
( Y j =  1 (40) 

EXAMPLE 1 

This first example is presented to show that finite element analyses using the 
adhesive element developed can duplicate results from analytical lap joint 
theories. The theory of Delale and ErdoganI4 has removed many of the 
inconsistencies of earlier theories and is thus considered in this example. Delale 
and Erdogan examined three types of loading on a simple lap joint. The loading 
which they labeled Membrane Loading is shown in Figure 8 and is the loading 
considered in this example. Particulars of the problem which they considered are 

E = lo7 psi 
E,, = 5.797 x 16 psi 

Y = 0.3 
v,, = 0.3027 

ConRguati 2 .  Five seclbns. UnHorm dv each section 

+ f;y .45rC2 - -  - _  .45*C2 '"*& 
I tH-1 I I 

I +-Hi 
Conf igua l i i  . F w  seclbns. N1 dvisioos end secl i i .  
N2 dvisii center. apad-g dcnkka each dviabn 

FIGURE 9 Divisions of the adherends 
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FINITE ELEMENTS FOR ADHESIVE MODELING 41 

(42) 

Three finite element idealizations were made of the configuration of Figure 8. 
The differences between the idealizations is the manner in which the adherends 
(and thus the adhesive) were subdivided into elements. The three methods of 
subdivision are shown in Figure 9. Control parameters were set to those 
considered by Delale and Erdogan14 thus 

a1 = 0 

a z = O  

a3= 1 

a4 = 1 

a5 = 1 
a6= 1 

IFIN = 0 

IPLANE = 1 

Figures 10 and 11 show the results of numerous finite element analyses using 
the two-node adhesive element of this paper. Figure 10 shows the maximum 
adhesive shear stress versus the number of divisions of the top adherend (and 
thus the bottom adherend) and Figure 11 shows the maximum adhesive normal 
stress versus the number of divisions of the top adherend. One can see that the 
shear stress in the adhesive and the normal stress in the adhesive converge to the 
results of those authors. Configurations 2 and 3 performed better than configura- 
tion 1 because of the larger number of beam and adhesive elements located near 
the ends of the configuration, the region where the adhesive stress is changing 
rapidly. 

Number of dvisions each adherend 
FIGURE 10 Maximum adhesive shear stress using 2-node adhesive element 
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42 W. C. CARPENTER AND R. BARSOUM 

lCWb 

47 bh 

Nunber of divisions each adnerend 
FIGURE 11  Maximum adhesive normal stress using 2-node adhesive element. 

Figures 12 and 13 show results using the 4-node adhesive element of this paper 
with the same set of control parameters as for the 2-node element. One can see 
that results for both maximum adhesive shear stress and maximum adhesive 
normal stress also converge to those of Delale and Erodgan. As before, 
configurations 2 and 3 gave better results than configuration 1. 

EXAMPLE 2 

This example studies the effect of the various control parameters on the 
configuration defined in Example 1. In this study, the idealization of Configura- 
tion 2 in Figure 9 was used with both the top and bottom adherends having 50 
divisions. In Example 1, control parameters were set in Eq. (42) to model the 

I 0  To 50 40 

Number of divisions each adherend 
FIGURE 12 Maximum adhesive shear stress using 4-node adhesive element. 
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FINITE ELEMENTS FOR ADHESIVE MODELING 43 

Number of dvisions each a h r e n d  

FIGURE 13 Maximum adhesive normal stress using 4-node adhesive element. 

assumptions of Delale and Erdogan. In this example, results using the assump- 
tions of Delale and Erdogan were taken as the standard against which results 
using other assumptions were compared. Table I1 gives the maximum shear and 
normal stress in the adhesive for a number of sets of control parameters. In each, 
one parameter at a time is varied from the standard to examine the effects of the 
various assumptions. The physical situation which these control parameters model 
is next discussed. 

Case 1. Delale and Erdogan assumed plane strain for the adhesive and 
adherends. Here plane stress for both is assumed. 

Case 2. Delale and Erdogan and Goland and Reissner made the assumption of 
zero thickness adherend (see previous section for discussion). Here the finite 
thickness assumption is made. 

TABLE I1 
Assumption cases considered 

Std 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 0 0 1 1  
0 0 0 1 1  
1 0 0 1 1  
0 1 0 1 1  
0 0 1 1 1  
0 1 1 1 1  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 0 1 1  
0 0 0 1 0  
0 0 0 0 0  
1 1 1 1 1  

1 
1 
1 
1 
1 
1 
1 
1 
0.737 
1 
0.737 
0.737 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
0.910 
1 
0.910 
1 

- 10,949 
- 11,478 
-10,914 
-10,971 
- 10,937 
-10,958 
- 10,949 
-10,949 
- 10,949 
-1 1,075 
- 10,949 
- 11,075 
-10,929 

17,982 
16,989 
17,880 
18,088 
17,972 
18,079 
17,992 
18,053 
15,443 
17,979 
15,503 

17,977 
15,510 
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Case 3. The complete strain-displacement equations require that al = 1 and 
a2 = 1 in Eq. (3). In this case, a1 = 1 with a2 = 0. With this assumption, strain 
does not vary in the z-direction. 

Case 4. In this case a2 = 1 but a1 = 0. Here, strain is allowed to vary in the 
z-direction but an incomplete shear-strain displacement equation is assumed (i. e. 

Case 5. Here aI = a2 = 1. Thus, the complete strain displacement equations 
are being used. 

Case 6. Delale and Erdogan considered shear deformation of the adherend and 
thus took a3 = 1. Here, a3 =O. Thus, shear deformation of the adherends is 
neglected. 

Case 7. Delale and Erdogan used the complete and considtent strain- 
displacement equations for the adhesive. Goland and Reissner, on the other 
hand, used a, = 0 in Eq. (6). One of the ramifications of using a4 = 0 is that one 
thus obtains ax = 0. 

Case 8. One of the most salient features of the theory of Goland and Reissner 
is that they assumed a, = EE,. If plane strain is being assumed for the adhesive, 
then one must take a5 = (1 + v,)(l - 2v,)/(l - v,) to accomplish their assumption 
(See Eq. (7)). In this example v, = 0.3027 giving a5 = 0.7372. 

Case 9. Goland and Reissner took the adherends to be in plane strain when 
considering bending but used, inconsistently, plane stress when considering axial 
force. To model Goland and Reissner’s assumptions, one must take = 1 - v2 
which with v = 0.3 yields a6 = 0.91. 

Case 10. Here, by taking (Y6 = 1, the effect on Goland and Reissner’s results of 
using a consistent plane strain assumption is examined. 

Case 11. Here the original Goland and Reissner assumptions are modeled. 
Case 12. In case 12, the complete strain-displacement equations are used and 

consistent with this assumption, the finite adhesive assumption is made. Here also 
the complete and consistent stress strain equations are used. 

One can see in Table I1 that maximum adhesive stress is insensitive to most of 
the assumptions made about the behavior of the adhesive and adherends. The 
exception is that the assumption made by Goland and Reissner that a, = EE, 
(inconsistent stress-strain equations) affects the normal stress by approximately 
15%. 

Case 12 uses the consistent stress-strain equations and the complete strain- 
displacement equations. Using the assumptions of case 12, as the finite element 
grid was refined, results converged to those of Table 11. Thus, it is not just the 
incomplete strain-displacement and/or incomplete stress-strain equations which 
yields stress convergence with mesh refinement. Here, the single row of adhesive 
elements coupled with the displacement incompatibility between the adherend 
and adhesive elements permits convergence. If one used more than one row of 
adhesive elements and compatible plane stress or plane strain elements for both 
the adherends and adhesive, the stress singularity at the joint’s edges would 
prevent convergence of the finite element solution with some refinement. 

yx, = au / az). 
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CONCLUSION 

A two-node and a four-node adhesive element are presented for modeling the 
adhesive in a bonded configuration. The elements can be used in conjunction with 
standard 2D plane stress or plane strain elements to model the adherends or can 
have their nodes offset to allow them to be used with beam or plate type elements 
which have their nodes at their centroids. Using these elements together with 
standard elements to model the adherends allows the power of the finite element 
method to be used to analyze complex geometries. Because the adhesive 
elements are derived using incomplete strain-displacement equations, the stress 
singularities which would otherwise occur at the connection edges at the 
bi-material interfaces are removed and convergence of adhesive stress is thus 
obtained with mesh refinement. 

The elements are quite general and can model, with the selection of values of 
control parameters, the assumptions of numerous authors. The assumptions of 
Delale and E r d ~ g a n ' ~  are discussed in detail and it is shown that the adhesive 
element with appropriate control parameters gives results which converge to 
those of that reference. The effect of various assumptions on the maximum shear 
and normal stress in the adhesive was investigated. Results were found to be 
insensitive to assumptions made with the exception that the inconsistent 
stress-strain assumption of Goland and Reissner' affected results by approxim- 
ately 15%. 
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